
ACTA UNIV. CIB., Series E, vol. 8, no. 1, 2004

27

A SCIENTIFIC RESEARCH RESULTS MANAGEMENT

SYSTEM I. ARHITECTURE

MIRONESCU Ion-Dan

University “Lucian Blaga” of Sibiu

Abstract:

The exponential growth of the amount of data generated by the scientific research requires

the implementing of a data management system. The article describe the development of

such a system based on Open Source software for a small sized (and budgeted) research

team . This first part concentrates on the system architecture.

1.INTRODUCTION

The fast growing amount of data that results from the activities of even a

small sized research team impose the use of a data management system in

order to provide:

- reliable and secure storage of large amount of data from multiple

source;

- concurrent access to the stored data;

- access control system;

- support for metadata association (at least time stamp and source URI)

and metadata-based data retrieval;

The high cost of a commercial solution has made it in the past unreachable

exactly for these small teams. The rise of reliable and competitive (proved in

commercial use!) Open Source software and the effort toward open standards

(like the XML related ones) give the possibility to implement such solution

with in-house teams. Although not negligible the cost of implementation are

affordable.

2. CURRENT PRACTICE

The figure 1 describe the actual form of “data management“. Data are

produced as result of two type of research activities:

ACTA UNIV. CIB., Series E, vol. 8, no. 1, 2004

28

- experimental measurement – data is in the proprietary (legacy) format of

the data acquisition system and is stored locally. Where possible,

transformation to a more “universal” format (CSV, xls) is performed

locally – often conducing to data redundancy. Metadata (time, author,

facility used, experimental setup etc.) is “stored” in the file system

(directories and files names), as separate descriptive text file or on paper

so that the data retrieving based on metadata is rudimentary. In this form

distributed and concurrent access to data and metadata, without the direct

support of the data “owner” is impossible;

Figure 1: Current data workflow

- numerical simulation - the simulation data (initial solution, boundary

condition, simulation parameter) is prepared with proprietary pre-

processing tools; the simulation results are stored direct in formats that

proprietary post processing tool can read from; in this form for using

PC 3

PC 1 DAQ Exp_rez.PF2

Format

Convertor

Exp_rez.SFT

Num_rez.SF

Geom

Exp_rez.SFT

Display.SFT

param_ex.PF1

PC 2

Post -processing Tool

Simulation

Engine

param_num.PF3

Geom.PF4

Num_rez.SFT

Geom

ACTA UNIV. CIB., Series E, vol. 8, no. 1, 2004

29

other pre- or post-processing tool a special export or import routine must

be developed. Often this routine also performs a transformation (for

example interpolation) on the data so that raw data are lost. Because the

post processing file must also be self-contained, some information (for

example discretisation mesh) is stored redundant. Metadata handling is

similar to that for experimental data. The same access limitation applies.

The data resulting from the two activities must be often combined (for

example for validating the result of a simulation). With data located on

different computer, stored in different (often incompatible) physical formats

this is a supplementary time and resources consuming task.

3. THE PROPOSED SOLUTION

For such a system a three tiered solution seems to be optimal:

- a storage back-end - in most cases a relational RDBMS

- a front-end – that provide access and visualisation of stored data

- a middle tier that interconnect the two layer and also provides the

interface between the data producers and the RDBMS

If “use cases“ make easier the choice - based in first place on the system

requirements - of the back-and front-end, no standard solutions or guide lines

for the implementation of the middle tier exist due the great variety of

proprietary (and often legacy) format used by the data producers (data

acquisition and simulation system). The emerging of the eXtensible Mark-up

Language (XML) and XML derived languages (Harold et al.2002) as a

standardised interchange format seems to indicate the way to go.

The middle tier application of choice due to the requirements is the Apache

Web server. The open plug-in architecture permits to flexible extend and

customise the server-side functionality without hawing to modify the main

Apache source Code. The proposed architecture make use of this mechanism

for:

• transforming the HTTP server in a Distributed Authoring and

Versioning (WebDAV) server allowing to the data produces to put their

data and metadata in a central repository in a familiar way(mod_dav

module) (Kim 2004) ;

• replacing transparently the traditional file based storage with a Data

Base storage that support searching more efficiently (mod_dav_dbms

module) (Kim 2004)

;

ACTA UNIV. CIB., Series E, vol. 8, no. 1, 2004

30

 Figure 2: Structure of the data management system

PC 1 PC 2

CENTRAL

REPOSITORY

 MySQL -backend

DAQ

Meta

data

Data

Data resource 1

Exp_rez.PF2

param_ex.PF1

Simulation

Engine

param_num.PF3 Geom.PF4

Data resource 2

param_ex

Geom.PF4

Data resource 3

param_num

APACHE

DAV client

DAV client

Mod_dav

Mod_dav_dbms

Num_rez.SFT

View resource

PC 3

Num_rez.SFT

mod_perl

DAV client

Display.vtk

AxKit

pipeline

APACHE

Mod_dav

Mod_dav_dbms

Geom.PF4

ACTA UNIV. CIB., Series E, vol. 8, no. 1, 2004

31

• providing customisable transformation pipelines (XSLT or Perl based)

from and to XML/non-XML formats (mod_perl + AxKit).(Bekman 2003)

(Ray 2003)

The back-end is in this case a MySQL database.

Standard DAV enabled applications can be used for managing the data and

the tools of choice (so long a open description of the used format exists) for

visualising them on the client-side. The path can be shorten by either

combining a visualisation library (for example the VTK based package

MayaVi) with DAV functionality (for example from the PyDAV library) or

using a plug-in (for example for X3D) with a standard WebDAV enabled

browser.

The use of the system implies two activities: publishing and accessing data

Publishing data

From user point of view this is as simple as moving a file to a local folder.

The browser can map the central data repository as a network drive so that

standard file system operation as create, copy, move and rename are

possible. As result a data resource is created in the central repository.

The metadata include information on user, creation time, data source and

format but can also include information on the experimental setup or the

simulation case that generated the data and can be automatically generated

either by the browser on basis of template system and user provided data or

on the server side on basis of a registered profile.

Accessing data

The data can be accessed in two modes:

- raw mode – that can be done in the same mode as the publishing by

simply copying back the data on the local system;

- view mode – the data is filtered server-side to obtain a particular view of

the data in a particular format. For this a view description resource must

be created in the repository. This resource contains two category of

information:

- the reference to the data resource or resources (when the view is

based on multiple data sources;

- the information needed to configure and drive a AxKit pipeline of

transformations that include SAX and XSLT based filter;

When a copy of such a view resource is requested from the server the

transformation pipe line is fired and the server returns a document that

integrate the data in a new format.

ACTA UNIV. CIB., Series E, vol. 8, no. 1, 2004

32

The simplest transformation is one that only transforms data of a single

resource from a storage format to a suitable display format (for example

from CSV to a HTML table). On the opposite end of the complexity scale are

views that combine data from many sources (for example time series of

measured data with geometry data) in a complex format such as the VTK

XML format

For each data resource a XDTM (Moreau 2004) abstract dataset description

must be provided.

If the conversion is only from one binary format to another, the filter parses

this description and by using mappings (in XDTM/DLDF) (Beckerle 2003)

from this data set description to the physical representations from / to which

the conversion take place reads the data from one source and writes it down

to the other. Whenever the conversion takes place to an XML derived format

the first filter produce the XML representation of the abstract data set from

which a XSLT based filter produce the desired format.

CONCLUSION

The presented architecture improves the access to the data by providing:

- a central repository with distributed access, access control system and

a better searching system

- support for metadata that help in retrieving relevant data

- support for generation of multiple views on the same data

The use of the WebDAV protocol reduces the data publishing and accessing

to simple file transfer operation familiar to the users.

REFERENCES

1. E. R. Harold, W. S. Means, XML in a Nutshell, 2nd Edition. O'Reilly, New York,2002

2. S. Bekman, E. Cholet, Practical mod_perl O'Reilly New York,2003

3. E. T. Ray and J. McIntosh, Perl&XML, O'Reilly New York, 2003

4. G. Stein WebDAV:Distributed Authoring and Versioning, Adobe technical Seminar

Series, May1999.

5. S. Kim, K. Pan, E. Sinderson, Arhitecture and data model of a WebDAV based

Collaborative System, CTS conference 2004

6. L. Moreau, Y. Zhao, I. Foster, J. Voeckler, M. Wilde, 2004, XDTM: the XML Dataset

Typing and Mapping for Specifying Datasets. Preprint submitted to European Grid

Conference (EGC'05), Amsterdam

7. M. J. Beckerle, A Proposal for a DFDL that handles Commercial Data Processing

Requirements, draft on http://forge.gridforum.org/,2003

